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Sources of Beam Instability

- Magnetic Field Errors

- Mechanical
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Sources of Beam Instability - Magnetic Field Errors

A localized change in transverse magnetic field δB(s) will introduce a kick 

which in turn will cause a closed orbit distortion with a kink in it:
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Sources of Beam Instability - Quadrupole Magnetic Field Errors

K. Thompson etal, http://accelconf.web.cern.ch/accelconf/p89/PDF/PAC1989_0396.PDF 
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Quadrupole Misalignment Amplification Factor

Closed orbit distortion ∆y(s) resulting from the misalignment of a quadrupole with 
focal length fy by an amount δy1  

The cumulative effect of the uncorrelated misalignment of N quadrupole magnets 
is to produce an rms closed orbit deviation

where σq is the rms amount of quadrupole misalignment.  This formula was 
derived for a simple FODO lattice, where focussing and defocussing quads have 
the same focal length, but with opposite sign, although the general behaviour is 
similar for any storage ring..  The quantity <β> is the average beta function at the 
quadrupole locations.
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J. Rossbach, Particle Accelerators, 1998, Vol. 23, pp.121-132
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Ramifications of Amplification Factor for Orbit Stabilization

1) Formula is valid for time-dependent quadrupole misalignment, i.e. vibrations

2) Machines with strong focussing (small f  --> large field gradient) are potentially 
very susceptible to large amplification of tiny magnet motions.  All modern light 
sources have extremely strong focussing.

3) It gets worse for larger machines as the square root of N.  For APS, N = 400
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Design Trick to Fool the Machine
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Quadrupole Triplet Mounted Rigidly on a Common Girder

Q1
Q2

Q3

Girder 1

Girder 2
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Amplification Factor for Rigidly Mounted Quad Multiplets

Now N = 120 Girders vs. 400 Quadrupoles, ftriplet > fquad ,  σq -> σg, the rms girder 
displacement.  At the APS, the amplification assuming uncorrelated quadrupole 
motion was approx. 50 vs. 20 when grouped by girder.
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Application of Quadrupole Displacement Formula to Beam-Based Alignment
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QBPM

C1 C2 C3

Correctors C1, C2, C3 form a closed bump to vary δy1

Unless                , a small change in the strength of Q willδy1 0=
cause a global orbit distortion according to the above formula

δy1
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δy1 (mm)

dy(s)

dQ

(mm / Amp)

δy1 = 0.196 +- .002 mm

( Varied by local bump )

Experimental Determination of BPM - Quad Offset
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Ansatz

Compressional P-waves

Equation of Motion, Homogenous, Isotropic Media

Shear  S-waves

Geophysics

Ilya Tsvankin, “Seismic Wavefields in Layered Isotropic Media” 
Colorado School of Mines Geophyics Dept.

ρ = mass density - kg / m3

µ = shear modulus of elasticity
 κ = bulk modulus

4
3
---

ui = displacement vector field

κ

κ
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Geometry Associated with Compressional (P) and Shear (S) Waves

http://www.sfu.ca/earth-sciences/courses/317Spring02/4-Earthquake_Seismology.htm

(Body Waves)
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Yet More Flavors of Seismic Vibrations

http://www.sfu.ca/earth-sciences/courses/317Spring02/4-Earthquake_Seismology.htm

(Surface Waves)
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D. Holder, CLRC Daresbury Report AP-BU-rpt-001

Material Properties and Seismic Wave Velocities for Various Rock Types

http://www.astec.ac.uk/diamond/notes/ap/AP-BU-rpt-001-Ground%20Motion%20Intro.doc
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Machine Diameter  Revolution 
Frequency

Frequency at 
which λ = D, 
@v=750 m/s

SPEAR 74.6 meters 1.3 MHz 10 Hz

PEP 700 meters 136 kHz 1 Hz

Tevatron 2 km 47 kHz 0.3 Hz

Frequency Scales Associated with Ground Vibration

G. Fischer, AIP153, pp. 1047-1119
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Accelerator / Ground Motion Resonance Condition

When the wavelength of seismic waves approaches the ring dimensions, an amplification effect takes 
place whereby the amplitude of closed orbit distortion can be many times larger than the amplitude of 
ground motion.  This resonance condition occurs when

where C is the ring circumference, N is the number of superperiods, and ν is the fractional part of the 
tune (vertical or horizontal).

= ν,  N - ν, N + νC
λ
----

J. Rossbach, Particle Accelerators, 1998, Vol. 23, pp.121-132
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Response of Horizontal Beam Position to an Earthquake in Alaska
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Seismogram of Alaskan Earthquake 11/3/02
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Ground Motion at APS Sector 19 resulting from
Driving a Fork Truck Under the Ring
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Velocity Power Spectral Density Around the World

V. Shiltsev, http://epaper.kek.jp/e96/PAPERS/ORALS/TUY03A.PDF 
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Space-Time Ground Diffusion
(The ATL Law)

The mean square relative displacement (variance) of two points a distance L apart 
grows linearly with time T according to

where A is on the order of 10-5      µm2 / sec / meter.

This results in power spectral densities in time and space as follows:

dX2〈 〉 ATL=

1±

V. Shiltsev, 1995 Workshop on Accelerator Alignment
http://www.slac.stanford.edu/grp/met/TOC_S/1995conf.htm
http://www.slac.stanford.edu/grp/met/TOC_S/Papers/VShil95.pdf
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PSD of Closed Orbit Distortion at HERA, Using β = 1 meter

V. Shiltsev, http://epaper.kek.jp/e96/PAPERS/ORALS/TUY03A.PDF 

ATL Law Diffusion
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A Girder - End View
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A Girder - Side View
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G. Decker etal http://accelconf.web.cern.ch/accelconf/p95/ARTICLES/FAR/FAR19.PDF

0.5m Quad Horizontal Motion - No Pads
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S. Sharma MEDSI 2000 
http://www.aps.anl.gov/asd/me/Public/Papers(pdf)/vibration.pdf

Test Pedestal / Magnet Assembly

Diameters 4”, 5”, 6”
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Typical Ground Motion Spectrum

S. Sharma MEDSI 2000 
http://www.aps.anl.gov/asd/me/Public/Papers(pdf)/vibration.pdf
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S. Sharma MEDSI 2000 
http://www.aps.anl.gov/asd/me/Public/Papers(pdf)/vibration.pdf
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Damping Material
Anatrol #217
.006” Thickness .070” -Thick Steel Plates (3)

12”

8.5”

Laminated Damping Pad
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Visco-elastic Material Properties

http://multimedia.mmm.com/mws/mediawebserver.dyn?WWWWWWECOgjWpzXWizXWWWbEkGqUmxHb-
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C. Doose, S. Sharma, MEDSI’02,

Girder Transfer Function Measurement Arrangement

http://www.aps.anl.gov/asd/me/medsi02/papers/MED021.pdf



Beam Stability at Synchrotron Light Sources                                                                                       USPAS 2003, John  Carwardine Glenn Decker and Bob Hettel

C. Doose, S. Sharma, MEDSI’02,
http://www.aps.anl.gov/asd/me/medsi02/papers/MED021.pdf
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Gravity Fluctuations Showing Beating between Solar and Lunar Tides

Frequency (Cycles / Day)
1

Time (days)0 5 10

2

K1, O1, S2, and M2 respectively
represent the luni-solar diurnal,
principal lunar diurnal, principal
solar semi-diurnal, and principal
lunar semi-diurnal components.

Kulessa, B, etal, Geophys. Res. Lett.,30(1), 1011, (2003)

http://www.agu.org/pubs/sample_articles/cr/2002GL015303/5.shtml
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Sources of Beam Instability

- Electromagnetic

 -Power Supplies

- Insertion Devices    

 -RF
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Sources of Beam Instability - Magnetic Field Errors

A localized change in transverse magnetic field δB(s) will introduce a kick 

which in turn will cause a closed orbit distortion with a kink in it:
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Steering Correctors as Sources of Beam Instability

The APS uses pulse-width-
modulation power supplies to 
control the orbit, a total of 317 
in each of x, y

The steering corrector mag-
nets are combined-function 
horizontal / vertical correc-
tors.  Each magnet has two 
associated power supplies.

Of the 317 magnets, 38 are 
“high speed” correctors, the 
so-called “AV3” magnets.  
This allows orbit control at 
frequencies up to approx. 
100 Hz.  The balance are 
“slow” correctors, with only a 
few Hz bandwidth.

Note - the vertical beta func-
tion is large (> 20 meters) at 
the AP4 bpm locations.

Data Courtesy of L. Emery, APS
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Effect of fast correctors, in sensible units

Data Courtesy of L. Emery, APS
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All except fast correctors on, most at zero setpoint

Only fast correctors plus minimal number of slow correctors on.

Data Courtesy of L. Emery, APS
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All except fast correctors on, most at zero setpoint

Only fast correctors plus minimal number of slow correctors on.

Data Courtesy of L. Emery, APS
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Typical Integrated Noise at BPM’s Near Insertion Device Source Points

Data Courtesy of L. Emery, APS
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Beam Motion RMS
Real-time calculation of RMS in three bands simultaneously 

Data input
at sample rate

Three settable bands RMS values

Graphic Courtesy of L. Emery, F. Lenkszus, APS
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RMS Beam Stability Data

Top-up Transients

Data Courtesy of L. Emery, APS
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Insertion Devices
Insertion device gaps are variable on demand by the users at the APS.  Extremely strong variable mag-
netic fields result, especially at very small gaps. This results in

1) Steering error vs. gap

Here the integral is along the entire length of the insertion device.

2) Step change in trajectory through the device:

3) Vertical focussing (even for a perfect device) -- impacts beam size

4) Energy loss - impacts emittance

∆x' 1
Bρ
------- B s( ) sd∫=

∆x 1
Bρ
------- δB s'( ) s'd

s
∫ 
 
  sd∫=
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Insertion Device Magnetic Measurement Data and Field Integrals

Measured Field

Particle Trajectory

First Integral
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Insertion Device Magnetic Measurement Data and Field Integrals
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Insertion Device Magnetic Measurement Data and Field Integrals
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Insertion Device Magnetic Measurement Data and Field Integrals
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Insertion Device Magnetic Measurement Data and Field Integrals
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Insertion Device Magnetic Measurement Data and Field Integrals
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Insertion Device Magnetic Measurement Data and Field Integrals
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Reduction of ID gap change transient from
reduction of orbit correction update rate
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RF System
Thick metal vacuum chambers are an effective shield against most high frequency sources of stray mag-
netic fields.  At the aps, the vacuum chamber is 0.5” thick, forming a very effective low pass filter with 3-
dB point near a few Hz.

Exceptions are thin walled spool pieces associated with “fast” correctors (allows magnetic fields with fre-
quencies up to a few hundred Hz to penetrate), and the injection pulsed magnets, either in-vacuum or 
with ceramic vacuum chamber.

The RF system introduces very large, very high frequency (100’s of MHz) electric fields into the environ-
ment of the charged particle beam.

Changes in rf frequency / phase are immediately seen as horizontal beam motion at locations in the ring 
where the dispersion function η(s) is non-zero.
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An Unhappy Master Oscillator

After Replacement
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